S-Nitrosylation Decreases the Adsorption of H-Ras in Lipid Bilayer and Changes Intrinsic Catalytic Activity
Cell Biochemistry and Biophysics, ISSN: 1085-9195, Vol: 59, Issue: 3, Page: 191-199
2011
- 8Citations
- 7Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations8
- Citation Indexes8
- CrossRef6
- Captures7
- Readers7
Article Description
Structural, chemical, and mutational studies have shown that C-terminal cysteine residues on H-Ras could potentially be oxidized by nitrosylation. For investigating the effect of nitrosylation of Ras molecule on the adsorption of farnesylated H-Ras into lipid layer, experiments with optical waveguide lightmode spectroscopy were used. The analysis of association/dissociation kinetics to planar phospholipids under controlled hydrodynamic conditions has shown that preliminary treatment of protein by S-nitroso-cysteine decreased the adsorption of farnesylated H-Ras. The authors have found that compared with nitrosylated forms, farnesylated H-Ras has more compact configuration, because of the smaller area occupied by protein upon absorption at the membrane. The association rate coefficient for unmodified H-Ras was lower than similar parameter for farnesylated and nitrosylated forms. However, the desorbability, i. e., parameter, which reflects the rate of dissociation of protein from lipids is higher for farnesylated H-Ras. In addition, it was have found that farnesylation of cytoplasmic H-Ras, in contrast to membrane-derived forms, inhibits intrinsic GTPase activity of protein, and preliminary treatment of H-Ras by S-nitroso-cysteine restores the activity to the control level. These data suggest that nitrosylation of H-Ras rearranges the adsorptive potential and intrinsic GTPase activity of H-Ras through modification of C-terminal cysteines of molecule. © 2010 Springer Science+Business Media, LLC.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=79952696321&origin=inward; http://dx.doi.org/10.1007/s12013-010-9132-x; http://www.ncbi.nlm.nih.gov/pubmed/21103953; http://link.springer.com/10.1007/s12013-010-9132-x; https://dx.doi.org/10.1007/s12013-010-9132-x; https://link.springer.com/article/10.1007/s12013-010-9132-x; http://www.springerlink.com/index/10.1007/s12013-010-9132-x; http://www.springerlink.com/index/pdf/10.1007/s12013-010-9132-x
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know