Creutzfeldt-Jakob Disease Subtype-Specific Regional and Temporal Regulation of ADP Ribosylation Factor-1-Dependent Rho/MLC Pathway at Pre-Clinical Stage
Journal of Molecular Neuroscience, ISSN: 1559-1166, Vol: 56, Issue: 2, Page: 329-348
2015
- 6Citations
- 28Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations6
- Citation Indexes6
- CrossRef5
- Captures28
- Readers28
- 28
Article Description
Small GTPases of the Arf family mainly activate the formation of coated carrier vesicles. We showed that class-I Arf1 interacts specifically with full length GPI-anchored cellular prion protein (PrP). Several recent reports have also demonstrated a missing link between the endoplasmic reticulum and the Golgi-complex role for proper folding, but the exact molecular mechanism is not yet fully understood. In the present study, we identified and characterized the interactive role of Arf1 during PrP intracellular distribution under pathophysiological conditions. PrP interaction with Arf1 was investigated in cortical primary neuronal cultures of PrP wild type and knockout mice (PrP). Arf1 and PrP co-binding affinity was confirmed using reverse co-immunoprecipitation, co-localization affinity using confocal laser-scanning microscopy. Treatment with brefeldin-A modulated Arf1 expression and resulted in down-regulation and redistribution of PrP into cytosolic region. In the pre-symptomatic stage of the disease, Arf1 expression was significantly downregulated in the frontal cortex in tg340 mice expressing about fourfold of human PrP-M129 with PrP null background that had been inoculated with human sCJD MM1 brain tissue homogenates (sCJD MM1 mice). In addition, the frontal cortex of CJD human brain demonstrated significant binding capacity of Arf1 protein using co-immunoprecipitation analysis. We also examined Arf1 expression in the brain of CJD patients with the subtypes MM1 and VV2 and found that it was regulated in a region-specific manner. In the frontal cortex, Arf1 expression was not significantly changed in either MM1 or VV2 subtype. Interestingly, Arf1 expression was significantly reduced in the cerebellum in both subtypes as compared to controls. Furthermore, we observed altered RhoA activity, which in turn affects myosin light-chain (MLC) phosphorylation and Arf1-dependent PI3K pathway. Together, our findings underscore a key early symptomatic role of Arf1 in neurodegeneration. Targeting the Arf/Rho/MLC signaling axis might be a promising strategy to uncover the missing link which probably influences disease progression and internal homeostasis of misfolded proteins.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84930480575&origin=inward; http://dx.doi.org/10.1007/s12031-015-0544-3; http://www.ncbi.nlm.nih.gov/pubmed/25896910; http://link.springer.com/10.1007/s12031-015-0544-3; https://dx.doi.org/10.1007/s12031-015-0544-3; https://link.springer.com/article/10.1007/s12031-015-0544-3
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know