Crystal growth of quantum materials: a review of selective materials and techniques
Bulletin of Materials Science, ISSN: 0973-7669, Vol: 45, Issue: 1
2022
- 12Citations
- 21Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Availability of quantum materials as sufficiently large and high-quality single crystals holds the key to understanding their physical properties, which is crucial for making future progress in this exciting area of research. Here we review the crystal growth of a few representative quantum materials of topical interest grown in our laboratory using various crystal growth techniques, including optical floating zone, traveling solvent floating zone, chemical vapour transport and high-temperature flux methods. The chosen materials classes include: (a) low-dimensional quantum magnets, (b) superconductors of the pnictide family, (c) layered materials with triangular and honeycomb lattices and (d) 2D transition-metal based chalcogenides. Their quintessential physical properties demonstrating quantum behaviour are also shown in some cases.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know