Gene Therapy with Single-Subunit Yeast NADH-Ubiquinone Oxidoreductase (NDI1) Improves the Visual Function in Experimental Autoimmune Encephalomyelitis (EAE) Mice Model of Multiple Sclerosis (MS)
Molecular Neurobiology, ISSN: 1559-1182, Vol: 57, Issue: 4, Page: 1952-1965
2020
- 15Citations
- 37Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations15
- Citation Indexes15
- 15
- CrossRef10
- Captures37
- Readers37
- 37
Article Description
Mitochondrial dysfunction mediated loss of respiration, oxidative stress, and loss of cellular homeostasis contributes to the neuronal and axonal degenerations permanent loss of function in experimental autoimmune encephalomyelitis model (EAE) of multiple sclerosis (MS). To address the mitochondrial dysfunction mediated visual loss in EAE mice, self-complementary adeno-associated virus (scAAV) containing the NADH-dehydrogenase type-2 (NDI1) complex I gene was intravitreally injected into the mice after the onset of visual defects. Visual function assessed by pattern electroretinogram (PERGs) showed progressive loss of function in EAE mice were improved significantly in NDI1 gene therapy-treated mice. Serial optical coherence tomography (OCT) revealed that progressive thinning of inner retinal layers in EAE mice was prevented upon NDI1 expression. The 45% optic nerve axonal and 33% retinal ganglion cell (RGC) loss contributed to the permanent loss of visual function in EAE mice were ameliorated by NDI1-mediated prevention of mitochondrial cristae dissolution and improved mitochondrial homeostasis. In conclusion, targeting the dysfunctional complex I using NDI1 gene can be an approach to address axonal and neuronal loss responsible for permanent disability in MS that is unaltered by current disease modifying drugs.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85077572368&origin=inward; http://dx.doi.org/10.1007/s12035-019-01857-6; http://www.ncbi.nlm.nih.gov/pubmed/31900864; http://link.springer.com/10.1007/s12035-019-01857-6; https://dx.doi.org/10.1007/s12035-019-01857-6; https://link.springer.com/article/10.1007/s12035-019-01857-6
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know