Spectro-temporal investigation of the black hole X-ray transient 4U 1543–475 during the 2021 outburst
Journal of Astrophysics and Astronomy, ISSN: 0973-7758, Vol: 45, Issue: 2
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We report a detailed spectro-temporal analysis of the black hole low mass X-ray binary 4U 1543−475 during its 2021 outburst using the data from the Large Area X-ray Proportional Counter and the Soft X-ray Telescope instruments on board AstroSat. We studied the energy and frequency dependency of the source variability to probe the origin of the disc/coronal fluctuations. Following the state transition (from soft to intermediate state), the emergence of a band-limited noise component is observed along with the power law noise when the disk is recovering from a sudden decrease in the inner disk radius. A possible correlation between the low-frequency root mean square (RMS) variability amplitude and the covering fraction of the non-thermal component is detected. During the final AstroSat observation, a flip-flop phenomenon is reported, where rapid variation in RMS occurs in concurrence with sudden flux transition. An indication of the evolution of inner disk temperature along with a significant change in thermal flux was observed during the flip-flop phase, arguing for a disk instability-driven origin for this phenomenon. Our results suggest that the long-term variability evolution is primarily affected by the coronal changes, whereas the disk behavior governs the short-term variability evolution.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know