A new sample reduction method for decreasing the running time of the k-nearest neighbors algorithm to diagnose patients with congestive heart failure: backward iterative elimination
Sadhana - Academy Proceedings in Engineering Sciences, ISSN: 0973-7677, Vol: 48, Issue: 2
2023
- 4Citations
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The model complexity is strictly connected to both the sample size and the number of features in a conventional pattern recognition study. Although there are some sample reduction methods in the literature, they cannot give the highest classifier performance or are not able to achieve the minimum number of samples in general. In this study, we offered a new sample reduction method, named Backward Iterative Elimination. To show its efficiency, we classified congestive heart failure (CHF) patients and healthy subjects from heart rate variability (HRV) features using the k-nearest neighbors (kNN) classifier. We extracted 59 HRV features (time and frequency domain measurements through power spectral density estimates of different transformation methods in addition to nonlinear measures calculated from Poincare plot, sample entropy, symbolic dynamics, and detrended fluctuation analysis) from databases provided by the Massachusetts Institute of Technology and Boston’s Beth Israel Hospital. The extracted features were classified using kNN with various odd k values from 1 to 19. The proposed method was compared to three well-known reduction methods: Backward elimination, Gaussian elimination, and Genetic algorithm. The proposed system yielded the highest accuracy values for each “k” value. While the genetic algorithm achieved the maximum sample size reduction in general, the proposed method showed better sample size reduction performance than other backward elimination methods. The method resulted in a classifier accuracy of 87.95% with 33 samples only. In this case, the algorithm run time reduces to 9.1411 ms, which is 12.1578 ms using all samples. In conclusion, the “Backward Iterative Elimination” gives the highest classifier performances with an appropriate ratio in sample size reduction so that it can be utilized in pattern recognition studies as a good alternative.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know