Initializing hyper-parameter tuning with a metaheuristic-ensemble method: a case study using time-series weather data
Evolutionary Intelligence, ISSN: 1864-5917, Vol: 16, Issue: 3, Page: 1019-1031
2023
- 2Citations
- 11Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Hyper-parameter optimization (HO), regardless of the type of optimization, inherently not only increases the completion time of the algorithm to be optimized but also creates a remarkable computational burden. However, employing the most suitable HO technique for a specific problem may not be sufficient to improve the performance of the selected machine learning algorithm. In such cases, it is common to deploy default values of the initialization hyper-parameters of HO. Instead, a configured set of initialization hyper-parameters of HO is significantly more impactful than a default mode of HO. In this study, a metaheuristic ensemble technique is proposed to configure the initialization hyper-parameters of HO. The proposed method is devised after an extensive time analysis of metaheuristics and applied to Echo State Network (ESN). The experiment performed with weather forecast data shows that metaheuristic initialization methods are quite compatible with evolutionary algorithms. In the benchmark, the proposed method outperformed two alternatives. Probabilistic methods such as Bayesian optimization are not preferable for metaheuristic initialization methods, according to the results of the experiment. Metaheuristic hyper-parameter initialization methods can be performed by utilizing Random search that provides a moderate performance in which there are hardware-restricted sources. Last, the hyper-parameter called leakingrate of ESN is the most sensitive one and creates the largest churns in the prediction performance.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know