A multiscale 3D convolution with context attention network for hyperspectral image classification
Earth Science Informatics, ISSN: 1865-0481, Vol: 15, Issue: 4, Page: 2553-2569
2022
- 1Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Deep learning, especially 3D convolutional neural networks (CNNs), has been proved to be an excellent feature extractor in the hyperspectral image (HSI) classification. However, simply accumulating conventional 3D convolution units and blindly increasing the depth of the network does not improve the model performance effectively. Besides, most deep learning models tend to struggle due to the serious overfitting problem under the condition of small sample, this seriously restricts the accuracy of model classification. To solve the abovementioned problems, we proposed a multiscale 3D convolution with context attention network for HSI classification. Specifically, we introduce a multiscale 3D convolution composed of convolution kernels of different sizes to replace the conventional 3D convolution to enlarge the receptive field and adaptively detect the HSI features in different scales. Then, based on multiscale 3D convolution, we build two subnetworks to efficiently exploit hierarchical spectral and spatial features respectively, and enhance the transmission of features. Finally, to explore the discriminative features further, we design two types of attention mechanisms (AM) to build compact relationships between each position\channel and aggregation center instead of model any position\channel and position\channel relationships. After each 3D convolution layer, a compact AM is adopted to refine extracted hierarchical spectral and spatial features respectively, and boost the performance of the model. Experiments were conducted on four benchmark HSI datasets, the results demonstrate that the proposed method outperforms state-of-the-art models with the overall accuracy of 96.39%, 97.83%, 98.58%, and 97.98% over Indian Pines, Salinas Valley, Pavia University and Botswana dataset, respectively.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know