Nanoparticle-Mediated Impact on Growth and Fatty Acid Methyl Ester Composition in the Cyanobacterium Fremyella diplosiphon
Bioenergy Research, ISSN: 1939-1242, Vol: 12, Issue: 2, Page: 409-418
2019
- 11Citations
- 19Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations11
- Citation Indexes11
- 11
- CrossRef3
- Captures19
- Readers19
- 19
Article Description
Insufficient light supply is a major limitation in cultivation of cyanobacteria for scaled-up biofuel production and other biotech-nological applications, which has driven interest in nanoparticle-mediated enhancement of cellular light capture. In the present study, Fremyella diplosiphon wild-type (Fd33) and halotolerant (HSF33-2) strains were grown in solution with 20-, 100-, and 200-nm-diameter gold nanoparticles (AuNPs) to determine their impact on biomass accumulation, pigmentation, and fatty acid methyl ester (FAME) production. Results revealed a significant increase in growth of Fd33 (0.244 ± 0.006) and HSF33-2 (0.112 ± 0.003) when treated with 200-nm AuNPs. In addition, we observed a significant increase in chlorophyll a accumulation in 200-nm AuNP-treated Fd33 (25.7%) and HSF33-2 (36.3%) indicating that NPs enhanced photosynthetic pigmentation. We did not observe any alteration in FAME composition and biodiesel properties of transesterified F. diplosiphon lipids among all AuNP treatments. Interactions between F. diplosiphon and AuNPs were visualized using scanning electron microscopy. Energy disper-sive X-ray spectroscopy confirmed the presence of AuNPs outside the cells with aggregation in high cell density locales. Our findings indicate that nanotechnological approaches could significantly enhance growth of the organism with no negative effect on FAME-derived biodiesel properties, thus augmenting F. diplosiphon potential as a biofuel agent.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85062787938&origin=inward; http://dx.doi.org/10.1007/s12155-019-09966-9; http://www.ncbi.nlm.nih.gov/pubmed/31984113; http://link.springer.com/10.1007/s12155-019-09966-9; https://dx.doi.org/10.1007/s12155-019-09966-9; https://link.springer.com/article/10.1007/s12155-019-09966-9
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know