Deep learning model for breast cancer diagnosis based on bilateral asymmetrical detection (BilAD) in digital breast tomosynthesis images
Radiological Physics and Technology, ISSN: 1865-0341, Vol: 16, Issue: 1, Page: 20-27
2023
- 9Citations
- 57Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations9
- Citation Indexes9
- CrossRef1
- Captures57
- Readers57
- 57
Article Description
The purpose of this study was to develop a deep learning model to diagnose breast cancer by embedding a diagnostic algorithm that examines the asymmetry of bilateral breast tissue. This retrospective study was approved by the institutional review board. A total of 115 patients who underwent breast surgery and had pathologically confirmed breast cancer were enrolled in this study. Two image pairs [230 pairs of bilateral breast digital breast tomosynthesis (DBT) images with 115 malignant tumors and contralateral tissue (M/N), and 115 bilateral normal areas (N/N)] were generated from each patient enrolled in this study. The proposed deep learning model is called bilateral asymmetrical detection (BilAD), which is a modified convolutional neural network (CNN) model of Xception with two-dimensional tensors for bilateral breast images. BilAD was trained to classify the differences between pairs of M/N and N/N datasets. The results of the BilAD model were compared to those of the unilateral control CNN model (uCNN). The results of BilAD and the uCNN were as follows: accuracy, 0.84 and 0.75; sensitivity, 0.73 and 0.58; and specificity, 0.93 and 0.92, respectively. The mean area under the receiver operating characteristic curve of BilAD was significantly higher than that of the uCNN (p = 0.02): 0.90 and 0.84, respectively. The proposed deep learning model trained by embedding a diagnostic algorithm to examine the asymmetry of bilateral breast tissue improves the diagnostic accuracy for breast cancer.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85141537247&origin=inward; http://dx.doi.org/10.1007/s12194-022-00686-y; http://www.ncbi.nlm.nih.gov/pubmed/36342640; https://link.springer.com/10.1007/s12194-022-00686-y; https://dx.doi.org/10.1007/s12194-022-00686-y; https://link.springer.com/article/10.1007/s12194-022-00686-y
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know