Generating an In Vitro Gut Model with Physiologically Relevant Biophysical Mucus Properties
Cellular and Molecular Bioengineering, ISSN: 1865-5033, Vol: 15, Issue: 5, Page: 479-491
2022
- 13Citations
- 32Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations13
- Citation Indexes13
- 13
- Captures32
- Readers32
- 32
Article Description
Introduction: Gastrointestinal (GI) in vitro models have received lasting attention as an effective tool to model drug and nutrient absorption, study GI diseases, and design new drug delivery vehicles. A complete model of the GI epithelium should at a minimum include the two key functional components of the GI tract: mucus and the underlying epithelium. Mucus plays a key role in protecting and lubricating the GI tract, poses a barrier to orally administered therapies and pathogens, and serves as the microenvironment for the GI microbiome. These functions are reliant on the biophysical material properties of the mucus produced, including viscosity and pore size. Methods: In this study, we generated in vitro models containing Caco-2 enterocyte-like cells and HT29-MTX goblet-like cells and determined the effects of coculture and mucus layer on epithelial permeability and biophysical properties of mucus using multiple particle tracking (MPT). Results: We found that mucus height increased as the amount of HT29-MTX goblet-like cells increased. Additionally, we found that increasing the amount of HT29-MTX goblet-like cells within culture corresponded to an increase in mucus pore size and mucus microviscosity, measured using MPT. When compared to ex vivo mucus samples from mice and pigs, we found that a 90:10 ratio of Caco-2:HT29-MTX coculture displayed similar mucus pore size to porcine jejunum and that the mucus produced from 90:10 and 80:20 ratios of cells shared mechanical properties to porcine jejunum and ileum mucus. Conclusions: GI coculture models are valuable tools in simulating the mucus barrier and can be utilized for a variety of applications including the study of GI diseases, food absorption, or therapeutic development.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85139518183&origin=inward; http://dx.doi.org/10.1007/s12195-022-00740-0; http://www.ncbi.nlm.nih.gov/pubmed/36444342; https://link.springer.com/10.1007/s12195-022-00740-0; https://dx.doi.org/10.1007/s12195-022-00740-0; https://link.springer.com/article/10.1007/s12195-022-00740-0
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know