Medical Image Encryption Based on Fisher-Yates Scrambling and Filter Diffusion
Journal of Shanghai Jiaotong University (Science), ISSN: 1995-8188, Vol: 30, Issue: 1, Page: 136-152
2025
- 2Citations
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A medical image encryption is proposed based on the Fisher-Yates scrambling, filter diffusion and S-box substitution. First, chaotic sequence associated with the plaintext is generated by logistic-sine-cosine system, which is used for the scrambling, substitution and diffusion processes. The three-dimensional Fisher-Yates scrambling, S-box substitution and diffusion are employed for the first round of encryption. The chaotic sequence is adopted for secondary encryption to scramble the ciphertext obtained in the first round. Then, three-dimensional filter is applied to diffusion for further useful information hiding. The key to the algorithm is generated by the combination of hash value of plaintext image and the input parameters. It improves resisting ability of plaintext attacks. The security analysis shows that the algorithm is effective and efficient. It can resist common attacks. In addition, the good diffusion effect shows that the scheme can solve the differential attacks encountered in the transmission of medical images and has positive implications for future research.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know