PlumX Metrics
Embed PlumX Metrics

Design Optimization of Concrete Gravity Dam Subjected to Near-field Earthquake Based on Novel Lean-bubble Sort Approach

KSCE Journal of Civil Engineering, ISSN: 1226-7988, Vol: 28, Issue: 10, Page: 4293-4308
2024
  • 0
    Citations
  • 0
    Usage
  • 3
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Due to limitations in traditional concrete gravity dam (CGD) design, a new approach is necessary. In this study, the lean analysis as a novel approach for CGD design, considering the interaction between dam and reservoir was considered. Maximum and minimum stresses at the heel and displacement of the crest were obtained as crucial input values of bubble sorting based on seismic analysis using Finite element analysis (FEA), and the Fuzzy Analytic Hierarchy Process (FAHP). The fuzzy bubble sorting analytic process, aimed at developing a novel method for selecting the best CGD configuration, was developed. Required Criteria, Sub-Criteria and developed models were applied to optimize the body of CGD. The weight of each sub-criterion and models were calculated based on pairwise comparison matrices. The novel approach was designed in MATLAB with the OPT-CGD code to select the best CGD model. The best weight of the Criteria, for selecting the best CGD model, based on the lean construction principles was selected from 60 developed models under implicit dynamic analysis. Statistical analysis reveals a 20% reduction in the concrete mass of the case study's optimal body compared to the traditionally designed dam.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know