Heat Stress Modulates Superoxide and Hydrogen Peroxide Dismutation and Starch Synthesis during Tuber Development in Potato
American Journal of Potato Research, ISSN: 1874-9380, Vol: 101, Issue: 4, Page: 275-289
2024
- 1Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Potato production is being affected by high temperature stresses worldwide due to global warming. The biological basis of carbohydrate metabolism and reactive oxygen species (ROS) activity in potato tubers under high temperature stress is yet to be clearly understood. We evaluated the activities of two of the most important primary ROS members: superoxide (O.) and hydrogen peroxide (HO) and their scavengers to understand the effects of heat stress on the changes of carbohydrates in growing tubers of five potato varieties including heat-tolerant and heat‐susceptible check varieties. The enzymatic ROS-scavengers were found to be differentially activated in these genotypes. The detoxification mechanism was more efficient in dual-stress (heat and salt) tolerant variety compared to single-stress tolerant variety. The antioxidant activity was increased by several folds in the tolerant variety compared to the susceptible variety. Storage starch accumulation and its composition was affected by O. and HO metabolisms in potato tuber. The findings will be helpful in understanding the biological basis of the effect of ROS-detoxification on starch accumulation in growing tubers under heat stress.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know