Quantifying the Effect of Salinity Stratification on Phytoplankton Density Patterns in Estuaries
Estuaries and Coasts, ISSN: 1559-2731, Vol: 41, Issue: 2, Page: 453-470
2018
- 8Citations
- 33Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
To quantify the effect of salinity stratification on phytoplankton density (denoted as P) patterns, experiments were conducted with an idealised model that couples physical and biological processes. Results show that the idealised model is capable of capturing the main features of observed P patterns in the Columbia River estuary during the spring season: during weak stratification, P is almost vertically uniform with values decreasing towards the estuary mouth, whereas during strong stratification, high values of P extend further seawards but are confined to the upper layer. Sensitivity studies reveal that the strong vertical gradients of P can only occur if the intensity of turbulence (measured by depth-averaged values of vertical eddy viscosity and eddy diffusivity) is weak. The advection of P by subtidal currents is important in obtaining a smaller along-estuary gradient of P during weak stratification and in obtaining a smaller horizontal gradient and a larger vertical gradient of P during strong stratification. Accounting for stratification controlled vertical distribution of vertical eddy viscosity and eddy diffusivity is necessary for obtaining realistic P patterns if stratification is strong, but not if stratification is weak. A higher osmotic stress, which leads to faster loss of phytoplankton in salt water, results in a larger along-estuary gradient of P if stratification is weak and in a larger vertical gradient of P if stratification is strong.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85021792934&origin=inward; http://dx.doi.org/10.1007/s12237-017-0276-4; http://link.springer.com/10.1007/s12237-017-0276-4; http://link.springer.com/content/pdf/10.1007/s12237-017-0276-4.pdf; http://link.springer.com/article/10.1007/s12237-017-0276-4/fulltext.html; https://dx.doi.org/10.1007/s12237-017-0276-4; https://link.springer.com/article/10.1007/s12237-017-0276-4
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know