Oxygen and Triple Oxygen Isotope Measurements Provide Different Insights into Gross Oxygen Production in a Shallow Salt Marsh Pond
Estuaries and Coasts, ISSN: 1559-2731, Vol: 43, Issue: 8, Page: 1908-1922
2020
- 6Citations
- 19Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The metabolism of estuarine environments is often estimated by measuring changes in dissolved oxygen concentrations. A central assumption of common oxygen-based approaches is that oxygen consumption rates (primarily respiration) are similar under light and dark conditions. Evaluating this assumption is critical, especially in benthic-dominated systems, because differences between daytime and nighttime respiration could result in underestimation or overestimation of ecosystem productivity. We evaluated rates of gross oxygen production over hourly to seasonal time scales in a shallow, temperate salt marsh pond. To assess whether a dissolved oxygen diel mass balance underestimated gross oxygen productivity, we compared rates using this traditional approach and using the triple oxygen isotope tracer of photosynthesis. This is a powerful combination because the triple oxygen isotope approach is theoretically insensitive to respiration. The methods agreed well over daily to seasonal time scales. However, during midday periods of peak light and productivity, the triple oxygen isotope approach resulted in higher hourly scale gross oxygen production rates. The timing and magnitude of this short-term difference is consistent with light-dependent oxygen uptake fluxes including photoreduction and/or light-stimulated community respiration. Finally, aquatic vegetation was associated with variability in productivity across the pond. Such small-scale environmental heterogeneity is evidence that this shallow pond was not laterally well mixed, and likely contributes to the dynamism of these common estuarine environments.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85088145346&origin=inward; http://dx.doi.org/10.1007/s12237-020-00757-6; https://link.springer.com/10.1007/s12237-020-00757-6; https://link.springer.com/content/pdf/10.1007/s12237-020-00757-6.pdf; https://link.springer.com/article/10.1007/s12237-020-00757-6/fulltext.html; https://dx.doi.org/10.1007/s12237-020-00757-6; https://link.springer.com/article/10.1007/s12237-020-00757-6
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know