Hydrogel Containing PEG-Coated Fluconazole Nanoparticles with Enhanced Solubility and Antifungal Activity
Journal of Pharmaceutical Innovation, ISSN: 1939-8042, Vol: 14, Issue: 2, Page: 112-122
2019
- 41Citations
- 78Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Purpose: The aim of this study was to prepare fluconazole (FLC) nanoparticles coated with polyethylene glycol (PEG) in the form of FLC-PEG-NPs and optimize the size and entrapment efficiency. Methods: Nine formulae were prepared by solvent antisolvent precipitation technique according to full 3 factorial designs. The effects of PEG molecular weight (X) and the drug polymer ratio (X) on the particle size (Y) and entrapment efficiency (Y) were explored. The prepared FLC-PEG-NPs were investigated for particle size, count rate, PDI, zeta potential, and morphology. Carbopol hydrogel was prepared, loaded with optimized FLC-PEG-NPs, and characterized for pH, FLC content, viscosity, homogeneity and spreadability, in vitro release, skin permeation, and antifungal activity. Results: The formulated nanoparticles were uniform in size and spherical in shape with slightly rough surface and free from aggregations. The effect of PEG molecular was antagonistic on the particle size and was agonistic on EE %. The release of drug from hydrogel containing pure FLC was always lower than that from hydrogel containing FLC-PEG-NPs. The kinetic analysis of drug release obeys first-order release model and super case II transport mechanism. The cumulative amount of drug permeated applying hydrogel containing optimized FLC-PEG-NPs was significantly higher than the amount permeated using pure fluconazole containing hydrogel. The antifungal activity of hydrogel containing FLC in the form of optimized PEG-coated nanoparticles was better than hydrogel containing pure drug as indicated by relatively high inhibition zone using agar well-diffusion method. Conclusion: Small spherical FLC nanoparticles with enhanced in vitro drug release as well as improved antifungal activity could be achieved by using PEG-coated fluconazole nanoparticles.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85049566030&origin=inward; http://dx.doi.org/10.1007/s12247-018-9335-z; http://link.springer.com/10.1007/s12247-018-9335-z; http://link.springer.com/content/pdf/10.1007/s12247-018-9335-z.pdf; http://link.springer.com/article/10.1007/s12247-018-9335-z/fulltext.html; https://dx.doi.org/10.1007/s12247-018-9335-z; https://link.springer.com/article/10.1007/s12247-018-9335-z
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know