PlumX Metrics
Embed PlumX Metrics

Downy feather-like para-aramid fibers and nonwovens with enhanced absorbency, air filtration and thermal insulation performances

Nano Research, ISSN: 1998-0000, Vol: 15, Issue: 6, Page: 5695-5704
2022
  • 24
    Citations
  • 0
    Usage
  • 11
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    24
    • Citation Indexes
      24
  • Captures
    11

Article Description

Fiber morphology with off-standing branches, as found in nature, e.g., in goose downy feather, provides exquisite functions that can be barely achieved by man-made fiber systems. In this work, we develop a simple and scalable method for generating downy feather-like para-aramid fibers and assemblies. Through treating commercial para-aramid microfibers with mild alkaline solution (low concentration of NaOH), a synergistic effect of chemical hydrolysis and physical shearing is successfully triggered to generate abundant nanofiber branches on the surface of para-aramid fibers. When compared with conventional monotonous structures, nonwovens composed of downy feather-like fibers exhibit a typical multiscale fiber morphology, larger specific surface area and smaller pore size, thus showing enhanced particles adsorption capacity (over twice of the pristine nonwoven), excellent oil absorption capacity (increased by ∼ 50%), improved air filtration performances (doubled the filtration efficiency) and effective thermal insulation (thermal conductivity = 26.1 mW·m·K). More attractively, the intrinsic flame-retardant nature of para-aramid is well inherited by the downy feather-like fibers, and the fabrication process requires neither sophisticated equipment, nor tedious procedures, making us believe the strong competitiveness of these fibers and assemblies. [Figure not available: see fulltext.]

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know