Lipoteichoic acids of lactobacilli inhibit Enterococcus faecalis biofilm formation and disrupt the preformed biofilm
Journal of Microbiology, ISSN: 1976-3794, Vol: 57, Issue: 4, Page: 310-315
2019
- 51Citations
- 91Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations51
- Citation Indexes51
- 51
- CrossRef50
- Captures91
- Readers91
- 91
Article Description
Enterococcus faecalis, a Gram-positive bacterium commonly isolated in patients with refractory apical periodontitis, invades dentin tubules easily and forms biofilms. Bacteria in biofilms, which contribute to recurrent and/or chronic inflammatory diseases, are more resistant to antimicrobial agents than planktonic cells and easily avoid phagocytosis. Although Lactobacillus plantarum lipoteichoic acid (Lp.LTA) is associated with biofilm formation, the effect of Lp.LTA on biofilm formation by E. faecalis is not clearly understood. In this study, we investigated whether Lp.LTA inhibits E. faecalis biofilm formation. The degree of biofilm formation was determined by using crystal violet assay and LIVE/DEAD bacteria staining. The quantification of bacterial growth was determined by measuring the optical density at 600 nm with a spectrophotometer. Formation of biofilms on human dentin slices was observed under a scanning electron microscope. E. faecalis biofilm formation was reduced by Lp.LTA treatment in a dose-dependent manner. Lp.LTA inhibited biofilm development of E. faecalis at the early stage without affecting bacterial growth. LTA from other Lactobacillus species such as Lactobacillus acidophilus, Lactobacillus casei, or Lactobacillus rhamnosus GG also inhibited E. faecalis biofilm formation. In particular, among LTAs from various lactobacilli, Lp.LTA showed the highest inhibitory effect on biofilms formed by E. faecalis. Interestingly, LTAs from lactobacilli could remove the biofilm preformed by E. faecalis. These inhibitory effects were also observed on the surface of human dentin slices. In conclusion, Lactobacillus species LTA inhibits biofilm formation caused by E. faecalis and it could be used as an anti-biofilm agent for prevention or treatment against E. faecalis-associated diseases.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85060581912&origin=inward; http://dx.doi.org/10.1007/s12275-019-8538-4; http://www.ncbi.nlm.nih.gov/pubmed/30671742; http://link.springer.com/10.1007/s12275-019-8538-4; https://dx.doi.org/10.1007/s12275-019-8538-4; https://link.springer.com/article/10.1007/s12275-019-8538-4
The Microbiological Society of Korea
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know