Improving artificial bee colony with one-position inheritance mechanism
Memetic Computing, ISSN: 1865-9292, Vol: 5, Issue: 3, Page: 187-211
2013
- 23Citations
- 14Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Artificial bee colony (ABC) algorithm simulates the foraging behavior of honey bees. It shows good performance in many application problems and large scale optimization problems. However, variation of a solution in the ABC algorithm is only employed on one dimension of the solution. This would sometimes hamper the convergence speed of the ABC algorithm, especially for large scale optimization. This paper proposes a one-position inheritance (OPI) mechanism to overcome this drawback. The OPI mechanism aims to promote information exchange amongst employed bees of the ABC algorithm. For separable function, OPIABC has a higher probability resulting in function value improvement of the worst positions than ABC. Through one-position information exchange, the OPI mechanism can assist the ABC algorithm to find promising solutions. This mechanism has been tested on a set of 25 test functions with D= 30 and on CEC 2008 test suite with D= 100 and 1,000. Experimental results show that the OPI mechanism can speed up the convergence of the ABC algorithm. After the use of OPI, the performance of the ABC algorithm is significantly improved for both rotated problems and large scale problems. OPIABC is also competitive on both test suites comparing with other recently proposed swarm intelligence metaheuristics (e.g. SaDE and PSO2011). Furthermore, the OPI mechanism can greatly enhance the performance of other improved ABC algorithms. © 2013 Springer-Verlag Berlin Heidelberg.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know