Parallel machine scheduling with job family, release time, and mold availability constraints: model and two solution approaches
Memetic Computing, ISSN: 1865-9292, Vol: 16, Issue: 3, Page: 355-371
2024
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Article Description
This paper investigates a new problem in an identical parallel machine environment called parallel machine scheduling with job family, release time, and mold availability constraints (PMS-JRM), which is highly challenging from the computational perspective as it extends the basic NP-hard problem P||∑C. The mold availability notion, first introduced in this paper, represents the availability relationship between jobs and machines. The PMS-JRM model originates from the imaging data collaborative processing in a low-earth-orbit satellite constellation under a time-varying communication network, and it can represent other multi-resource collaborative scheduling problems with discontinuous communication. An integer programming model was proposed to formulate the PMS-JRM. Due to its NP-hardness, two highly efficient heuristic solution approaches were proposed, namely a greedy algorithm with a hybrid first come first serve (HFCFS) dispatching rule (GA-HFCFS) and a Memetic Algorithm with Heterogeneous swap and Key job insertion operators (MA-HK). Extensive experiments were conducted on a set of test cases with various scales, and the results showed that GA-HFCFS outperforms three classical dispatching rules available in the literature. Taking the results of GA-HFCFS as initial solutions, MA-HK achieves optimal solutions for all small-scale cases while providing superior solutions within the same running time compared to two other competitors for large-scale cases. In particular, MA-HK yields better solutions in less running time than the state-of-the-art CPLEX solver. Additional experiments were conducted to highlight the critical ingredients of MA-HK.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know