Impact of the microalga Dunaliella salina (Dunal) Teodoresco culture and its β-carotene extract on the development of salt-stressed squash (Cucurbita pepo L. cv. Mabrouka)
Physiology and Molecular Biology of Plants, ISSN: 0974-0430, Vol: 28, Issue: 4, Page: 749-762
2022
- 6Citations
- 16Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations6
- Citation Indexes6
- Captures16
- Readers16
- 16
Article Description
Salinity is a major threat to crop production and global food security. Algae and their extracts containing bioactive compounds can enhance the salt tolerance of plants, including the salt-sensitive plants. The current study evaluated the efficacy of Dunaliella salina (Dunal) Teodoresco culture and/or its β-carotene extract in improving the salt tolerance of squash (Cucurbita pepo L. cv. Mabrouka). Amendment of C. pepo with D. salina culture and/or its β-carotene extract was more effective in alleviating the impact of moderate salinity imposed by seawater dilution of 2.5 dS m than either low (0.55 dS m) or high (3.5 dS m) salinity, with a comparable effect to that of salicylic acid (SA). Plants that received a combination of D. salina culture and its β-carotene extract showed significantly higher growth (total biomass, fruit productivity) and physiological attributes (photosynthetic pigments, nitrogen (N), phosphorus (P), and potassium (K) contents) than those receiving either amendment alone, reaching up to 80–90% of the SA-treated plants at moderate salinity (2.5 dS m). The combination could enhance the antioxidant activity of moderately salt-stressed C. pepo via increasing carotenoids and phenolics contents, suggesting that this combination could enhance the adaptation of C. pepo to the moderate salinity. The present study recommends using the blooms of D. salina and its β-carotene that is naturally secreted in situ in natural or synthetic open systems in improving the salt tolerance of C. pepo instead of using the expensive synthetic hormones.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85128484101&origin=inward; http://dx.doi.org/10.1007/s12298-022-01176-6; http://www.ncbi.nlm.nih.gov/pubmed/35592476; https://link.springer.com/10.1007/s12298-022-01176-6; https://dx.doi.org/10.1007/s12298-022-01176-6; https://link.springer.com/article/10.1007/s12298-022-01176-6
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know