Infinitely Many Nodal Solutions for Kirchhoff-Type Equations with Non-odd Nonlinearity
Qualitative Theory of Dynamical Systems, ISSN: 1662-3592, Vol: 23, Issue: 1
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this study, we investigate the existence of infinitely many radial sign-changing solutions with nodal properties for a class of Kirchhoff-type equations possessing non-odd nonlinearity. By combining variational methods and analysis techniques, we prove that for any positive integer k, the equation has a radial solution that changes signs exactly k times. Furthermore, we demonstrate that the energy of such solutions is an increasing function of k. Owing to the inherent characteristics of these equations, the methods used herein significantly differ from those used in the existing literature. Particularly, we discover a unified method to obtain infinitely many radial sign-changing solutions with nodal properties for local and nonlocal problems.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know