On the Poincaré–Bendixson Index Theorem for a Class of Piecewise Linear Differential Systems
Qualitative Theory of Dynamical Systems, ISSN: 1662-3592, Vol: 23, Issue: 1
2024
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Article Description
Poincaré–Bendixson index theorem showed that: if planar smooth differential systems have only finitely number of singular points inside a limit cycle, then the sum of the indices at these singular points is 1. Hence there is at least one singular point lie inside a limit cycle. These results are useful in practice since its provide information about the existence and location of limit cycles. It is also well known that planar smooth linear system cannot have limit cycles. While in a recent paper Llibre and Teixeira (Nonl Dyn 88:157–164, 2017), Llibre and Teixeira constructed a planar piecewise linear differential systems formed by two linear differential systems separated by the straight line Σ : { (x, y) | x= 0 } , such that both linear differential have no singular points, neither real nor virtual, but it can have a limit cycle. This paper revisit these piecewise linear differential systems by regularization process. Our results show that there are three Σ - singular points inside the limit cycle, and the sum of the indices at these singular points is 1. Thus the Poincaré-Bendixson index theorem is also valid for such piecewise linear differential systems.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know