Significance of ABA Biosynthesis in Plant Adaptation to Drought Stress
Journal of Plant Biology, ISSN: 1867-0725, Vol: 67, Issue: 3, Page: 175-184
2024
- 10Citations
- 14Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Environmental stresses have major impacts on the morphological, physiological, and biochemical processes of plants. Among these stresses, drought is the major one which greatly restricts crop productivity globally. When challenged by drought, plants promote the expression of ABA biosynthesis genes which results in ABA accumulation. Increase in ABA level promotes stomatal closure to increase plant’s adaptative response to drought stress. To handle and restrain the negative impact of drought stress, it is important to understand how plants respond to drought and the involvement of ABA in plant adaptation to drought stress at a molecular level. Under drought stress, ABA biosynthesis is the most significant event to protect plants from the dehydration stress. ABA biosynthesis is a complicated process that is mainly regulated by ABA biosynthetic enzymes. This review highlights the recent advancements in ABA biosynthesis and its involvement in plant adaptation to drought stress to improve their growth and development under water-deficient conditions.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know