Understanding Spatio-temporal Pattern of Grassland Phenology in the western Indian Himalayan State
Journal of the Indian Society of Remote Sensing, ISSN: 0974-3006, Vol: 47, Issue: 7, Page: 1137-1151
2019
- 9Citations
- 19Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
Remote Sensing
Assessment of the Temporal and Spatial Variations of Urban Development Using RS and GIS: A Case Study—Yasuj, Iran AbstractThe temporal-spatial change of cities is one
Article Description
The present study has analysed grassland phenology: start of greening (SOG), end of greening (EOG) and length of greening (LOG), and their rate of change in the western Himalaya in India (Himachal Pradesh) using MODIS NDVI time series data (2001–2015). These metrics were inspected at different stratification levels: state, elevation, climatic zones and bio-geographic provinces. Delayed SOG was observed over 44.87% (P < 0.1), and delayed EOG over 63.3% (P < 0.1) of grassland grids. LOG was shortened in 24.37% (P < 0.1) and extended in 58.04% (P < 0.1) of the grids. At the state level, when statistically significant pixels (SSP) and all the pixels (AP) are used (given as SSP:AP), SOG is delayed by 20.27:6.28 days year, while EOG is delayed by 38.02:14.97 days year and LOG is extended by 35.07:8.70 year days. Extended LOG is observed over the temperate and cold arid regions, and shortened LOG is observed over sub-alpine and alpine regions. Variations in SOG and EOG are not uniform across different climatic and bio-geographic regions. However, in the sub-alpine and alpine zones, SOG and EOG followed elevation gradients, i.e. late SOG with early EOG over higher elevations, and early SOG with late EOG over lower elevations. Our study has revealed an interesting pattern of translational phenology (i.e. late SOG and late EOG) of grasslands which hints towards shifting winter period. Overall, it is observed that variations in timing of snowfall and snow cover extent are the reasons for inter-annual variations in the grassland phenology.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know