Enhanced hydrogen evolution properties obtained by ultrasonic-cyclic voltammetry modification of C-supported PtCu thin film catalyst
Metals and Materials International, ISSN: 2005-4149, Vol: 23, Issue: 3, Page: 603-609
2017
- 4Citations
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Carbon-supported Pt-Cu (Pt-Cu/C) bimetallic catalyst was synthesized by Ion Beam Sputtering technology and subsequently annealed in vacuum and electrochemically etched by Ultrasonic-Cyclic Voltammetry (US-CV). Electrochemical measurements indicate that the sample was modified electrochemically by US-CV shows higher catalytic activity towards hydrogen evolution reaction than pure Pt/C. Scanning and transmission electron microscopy and electronic differential system analysis reveal that the surface of post-processed catalyst produced PtCu@Pt core-shell structure which increasing the efficiency of Pt. Transmission electron microscope analysis displays that on the surface of PtCu@Pt core-shell particles detects lattice compressive strain, the lattice compression variable is around 1.12%. X-ray photoelectron spectroscopy analysis confirms that the Pt4f binding energy of the post-processed PtCu/C is 71.10 eV, decreased by 0.2 eV compared to pure Pt/C (71.3 eV). It can be inferred that the enhancement of catalytic property attribute to the Cu atoms modified the geometric structure and electronic structure of the Pt atoms.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85018760069&origin=inward; http://dx.doi.org/10.1007/s12540-017-6392-7; http://link.springer.com/10.1007/s12540-017-6392-7; http://link.springer.com/content/pdf/10.1007/s12540-017-6392-7.pdf; http://link.springer.com/article/10.1007/s12540-017-6392-7/fulltext.html; https://dx.doi.org/10.1007/s12540-017-6392-7; https://link.springer.com/article/10.1007/s12540-017-6392-7
Springer Nature
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know