PlumX Metrics
Embed PlumX Metrics

Ultrasonic Vibration and Rheocasting for Refinement of Mg–Zn–Y Alloy Reinforced with LPSO Structure

Metals and Materials International, ISSN: 2005-4149, Vol: 24, Issue: 6, Page: 1315-1326
2018
  • 13
    Citations
  • 0
    Usage
  • 9
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    13
    • Citation Indexes
      13
  • Captures
    9

Article Description

In this work, ultrasonic vibration (UV) and rheo-squeeze casting was first applied on the Mg alloy reinforced with long period stacking ordered (LPSO) structure. The semisolid slurry of Mg–Zn–Y alloy was prepared by UV and processed by rheo-squeeze casting in succession. The effects of UV, Zr addition and squeeze pressure on microstructure of semisolid Mg–Zn–Y alloy were studied. The results revealed that the synergic effect of UV and Zr addition generated a finer microstructure than either one alone when preparing the slurries. Rheo-squeeze casting could significantly refine the LPSO structure and α-Mg matrix in MgZnYZr alloy without changing the phase compositions or the type of LPSO structure. When the squeeze pressure increased from 0 to 400 MPa, the block LPSO structure was completely eliminated and the average thickness of LPSO structure decreased from 9.8 to 4.3 μm. Under 400 MPa squeeze pressure, the tensile strength and elongation of the rheocast MgZnYZr alloy reached the maximum values, which were 234 MPa and 17.6%, respectively, due to its fine α-Mg matrix (α1-Mg and α2-Mg grains) and LPSO structure.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know