Effect of Mn Addition on the Mechanical Properties of Al–12.6Si Alloy: Role of Al(MnFe)Si Intermetallic and Microstructure Modification
Metals and Materials International, ISSN: 2005-4149, Vol: 27, Issue: 6, Page: 1713-1727
2021
- 26Citations
- 43Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Abstract: Effect of manganese (Mn) addition (0.0, 1.0, 2.0 and 3 wt%) on the microstructural morphology, hardness, tensile properties and fracture behaviour of the gravity cast eutectic Al–12.6Si alloy has been studied through XRD analysis, chemical analysis, optical metallography, FESEM analysis, energy dispersive spectroscopy analysis, hardness test, tensile test and quantitative phase analysis. As-cast Al–12.6Si–0.0Mn alloy has a non-uniformly distributed coarser and irregular shape primary and eutectic silicon particles inside the α-Al phase, and both the Si phase have very sharp corners. Whereas, the 1 wt% Mn added alloy has uniformly distributed fine eutectic and primary Si particles with blunt corners. Further, the addition of 1.0 wt% Mn forms very few (0.26 vol %) irregular shape Al(MnFe)Si intermetallic phase within the α-Al phase and eutectic Si phase. But, 2.0 wt% and 3 wt% Mn added alloy has an irregular shape coarse plate-like Al(MnFe)Si intermetallic phase besides the primary and eutectic Si phase. The bulk hardness of the Al–12.6Si alloy is increased with an increase in Mn concentration as the harder Al(MnFe)Si intermetallic phase forms and both the Si phase morphology modify. The microhardness of the constituent phases also varies with the change in Mn concentration in the alloy. The Mn addition improved the ultimate tensile strength, yield strength, and elongation (%) of the alloy. However, fractographs reveal that the brittle mode of fracture has been increased due to the presence of a higher volume of brittle Al(MnFe)Si intermetallic in 2.0 and 3.0% Mn alloy. On the other hand, the amount of brittle and cleavage fracture of Si particles decreased, and ductile fracture with dimples formation increased in 1.0 wt%Mn added alloy. Graphic Abstract: [Figure not available: see fulltext.]
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know