Biomechanical Factors Leading to High Loading in the Anterior Cruciate Ligament of the Lead Knee During Golf Swing
International Journal of Precision Engineering and Manufacturing, ISSN: 2005-4602, Vol: 21, Issue: 2, Page: 309-318
2020
- 8Citations
- 18Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
For golf swing, the soft tissue structure resisting joint compression and internal rotation of the knee at low flexion angle may be susceptible for a lead knee injury. Therefore, anterior cruciate ligament (ACL) rupture is one of the potential injuries that may occur from repeated stress during golf. The current study was purposed to investigate the biomechanical factors that lead to high ACL load in the lead knee during golf swing. The joint kinematic data of the lead leg and trunk, joint kinetic data of the lead knee, ground reaction force, and the external knee moments were compared between the low and high ACL loading groups. The results demonstrated an increased amount of frontal plane moment arm and external knee adduction (varus) moment just after ball impact for the high ACL loading group. These observations were associated with a characteristic difference in the upper body motion and were the main contributors to the elevated ACL force of the lead knee. The mechanism that generates a high amount of ACL loading during golf swing, which involves the application of external knee adduction moment just after ball impact, may differ from conventional non-contact ACL injury mechanisms that associated with dynamic valgus loading during injury circumstance.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know