Regulation and dysregulation of spatial chromatin structure in the central nervous system
Anatomical Science International, ISSN: 1447-073X, Vol: 96, Issue: 2, Page: 179-186
2021
- 2Citations
- 14Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations2
- Citation Indexes2
- CrossRef2
- Captures14
- Readers14
- 14
Review Description
Chromatin exists as a non-linear, “three-dimensional” structure in the nuclear space. The dynamic alteration of the chromatin structure leads to transcriptional changes during the formation of the neuronal network. Several studies providing evidence for the link between the dysregulation of spatial chromatin architecture and developmental disorders have accumulated. Therefore, we studied and reviewed the regulation and dysregulation of 3D genome organization in the central nervous system, with a special focus on the cohesin complex that is crucial for the formation of the chromatin loop structure. This review summarizes the function and mechanisms of spatial chromatin architecture during the development of the central nervous system. We discuss the link between the disturbances in the 3D chromatin structure and the diseases of the central nervous system. Finally, we discuss how the knowledge of 3D genome organization may lead to further advances in diagnosis and therapy for the diseases of the central nervous system.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85098601094&origin=inward; http://dx.doi.org/10.1007/s12565-020-00567-7; http://www.ncbi.nlm.nih.gov/pubmed/33392926; https://link.springer.com/10.1007/s12565-020-00567-7; https://dx.doi.org/10.1007/s12565-020-00567-7; https://link.springer.com/article/10.1007/s12565-020-00567-7
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know