Effect of High Temperature Annealing on Crystal Structure and Electrical Properties of Multicrystalline Silicon by the Metallurgical Method
Silicon, ISSN: 1876-9918, Vol: 12, Issue: 9, Page: 2099-2106
2020
- 4Citations
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The defects of dislocations and grain boundaries (GBs) could significantly reduce the electrical properties of multicrystalline silicon (mc-Si) solar cells. In this manuscript, the influence of crystal defects on the electrical properties of mc-Si was investigated, aims to carry out the research about the influence of crystal defects on the electrical properties of mc-Si. Purified metallurgical grade N type mc-Si ingot was obtained with the method of vacuum directional solidification technique by employing industrial production ingot furnace. The variations in grain boundaries and dislocations were characterized by electron backscatter diffraction (EBSD), and their effects on the electrical properties of mc-Si before and after annealing at different heat insulating time were investigated. Experimental results showed that high temperature annealing process could significantly improve the electrical properties of mc-Si, the minority carrier lifetime was improved from 0.599 μs to 0.770 μs after 10 h insulation, with a significant increase of 28.61%. Experimental results indicated that high temperature annealing process could significantly eliminate the crystal defects of multicrystalline silicon. The crystal defects was eliminated more obviously with prolonged heat preservation time. When treated by high temperature annealing, the proportion of small angle grain boundaries in the same region can be increased by as high as 13.45%. Moreover, the whole grain sizes of partly region of silicon wafer could be increased by 20000μm, increased by 15.89% compared with the original grain sizes. Based on the experiment phenomena, we attributed the improvement in the electrical properties of mc-Si to the elimination of dislocations, increased grain sizes and migration of GBs.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85076848900&origin=inward; http://dx.doi.org/10.1007/s12633-019-00296-1; http://link.springer.com/10.1007/s12633-019-00296-1; http://link.springer.com/content/pdf/10.1007/s12633-019-00296-1.pdf; http://link.springer.com/article/10.1007/s12633-019-00296-1/fulltext.html; https://dx.doi.org/10.1007/s12633-019-00296-1; https://link.springer.com/article/10.1007/s12633-019-00296-1
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know