Beneficial role of exogenous silicon on yield, antioxidant systems, osmoregulation and oxidative stress in fenugreek (Trigonella foenum-graecum L.) under salinity stress
Silicon, ISSN: 1876-9918, Vol: 15, Issue: 1, Page: 547-561
2023
- 6Citations
- 12Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Purpose: In the Earth’s crust, silicon (Si) is the most abundant element after oxygen, while, under salt stress, its role in the tolerance of aromatic and medicinal plants (AMPs) is not yet detailed. For this reason, in this study we evaluated the effect of exogenous Si on some tolerance-related parameters in salt-stressed fenugreek, as an important AMP. Methods: 3 mM of exogenous Si was applied to assess its impact on plant biomass and on some tolerance-related parameters in fenugreek (Trigonella foenum-graecum L.) grown under 150 mM NaCl stress. Results: Results showed that salinity reduced growth parameters, relative water content, photosystem II efficiency, stomatal conductance and K and Ca contents, while it increased the Na content, which could explain the obtained reduction in fenugreek growth and yield. However, Si supply reversed the depressive effects of salinity and improved fenugreek growth and yield. Adding exogenous Si also caused a significant reduction in Na content and increased K and Ca concentrations. The content of malonyldialdehyd and hydrogen peroxide and the level of electrolyte leakage were significantly increased in salt-stressed fenugreek, while were significantly decreased after Si supplementation. The reduction in oxidative stress markers in Si-treated plants was correlated with a significant increase in both enzymatic and non-enzymatic antioxidant systems and an important accumulation of compatible solutes. Conclusion: Therefore, exogenous Si was directly involved in the central defensive mechanisms to enhance salt tolerance of fenugreek, thus its application could be a promoting strategy to alleviate the damages of salinity on fenugreek growth and yield.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know