PlumX Metrics
Embed PlumX Metrics

Entropy generation on double diffusive MHD Casson nanofluid flow with convective heat transfer and activation energy

Indian Journal of Physics, ISSN: 0974-9845, Vol: 95, Issue: 7, Page: 1423-1436
2021
  • 39
    Citations
  • 0
    Usage
  • 11
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    39
    • Citation Indexes
      39
  • Captures
    11

Article Description

The viscous and Joule dissipation effects on stagnation point flow of thermally radiating Casson nanoliquid over a convectively heated stretching sheet under hydromagnetic assumptions are discussed. The influence of heat absorption on heat transfer and chemical reaction prompted by activation energy on mass transfer is also considered. The appropriate transformations are implemented for converting the governing partial differential equations into a set of coupled ordinary differential equations. BVP4C routine of MATLAB has been used to solve the coupled nonlinear ODEs. The way fluid velocity, concentration, temperature, Bejan number and entropy generation behave subject to change in the flow parameters, has been discussed through graphs, whereas the important physical quantities such as skin friction coefficient, Nusselt number and Sherwood number are analyzed on the basis of numerical values presented in tables. On the obtained numerical data of Nusselt number, linear and quadratic regression analyses have been performed. It is concluded that for larger values of thermal and concentration buoyancy parameters, fluid velocity tends to decrease inside the boundary layer region. It is also found that plastic dynamic viscosity of Casson nanoliquid tends to reduce the rate of entropy generation.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know