PlumX Metrics
Embed PlumX Metrics

MulStepNET: stronger multi-step graph convolutional networks via multi-power adjacency matrix combination

Journal of Ambient Intelligence and Humanized Computing, ISSN: 1868-5145, Vol: 14, Issue: 2, Page: 1017-1026
2023
  • 2
    Citations
  • 0
    Usage
  • 2
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Graph convolutional networks (GCNs) have become the de facto approaches and achieved state-of-the-art results for circumventing many real-world problems on graph-structured data. However, these networks are usually shallow due to the over-smoothing of GCNs with many layers, which limits the expressive power of learning graph representations. The current methods of solving the limitations have the bottlenecks of high complexity and many parameters. Although Simple Graph Convolution (SGC) reduces the complexity and parameters, it fails to distinguish the feature information of neighboring nodes at different distances. To tackle the limits, we propose MulStepNET, a stronger multi-step graph convolutional network architecture, that can capture more global information, by simultaneously combining multi-step neighborhoods information. When compared to existing methods such as GCN and MixHop, MulStepNET aggregates neighborhoods information at more distant distances via multi-power adjacency matrix while fitting fewest parameters and being computationally more efficient. Experiments on citation networks including Pubmed, Cora, and Citeseer demonstrate that the proposed MulStepNET model improves over SGC by 2.8, 3.3, and 2.1% respectively while keeping similar stability, and achieves better performance in terms of accuracy and stability compared to other baselines.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know