A top-down character segmentation approach for Assamese and Telugu handwritten documents
Journal of Ambient Intelligence and Humanized Computing, ISSN: 1868-5145, Vol: 15, Issue: 9, Page: 3275-3287
2024
- 2Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Digitization offers a solution to the challenges associated with managing and retrieving paper-based documents. However, these paper-based documents must be converted into a format that digital machines can comprehend, as they primarily understand alphanumeric text. This transformation is achieved through Optical Character Recognition (OCR), a technology that converts scanned image documents into a format that machines can process. A novel top-down character segmentation approach has been proposed in this work, involving multiple stages. Our approach began by isolating lines from handwritten documents and using these lines to segment words and characters. To further enhance the character segmentation, a Raster Scanning object detection technique is employed to isolate individual characters within words. Thus, the character segmentation results are integrated from the results of the vertical projection and raster scanning. Recognizing the significance of advancing digitization of handwritten documents, we have chosen to focus on the regional languages of Assam and Andhra Pradesh due to their historical and cultural importance in India’s linguistic diversity. So, we have collected datasets of handwritten texts in Assamese and Telugu languages due to their unavailability in the desired form. Our approach achieved an average segmentation accuracy of 93.61%, 85.96%, and 88.74% for lines, words, and characters for both languages. The key motivation behind opting for a top-down approach is two-fold: firstly, it enhances the accuracy of character recognition, and secondly, it holds the potential for future use in language/script identification through the utilization of segmented lines and words.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know