GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks
Environmental Earth Sciences, ISSN: 1866-6299, Vol: 75, Issue: 14
2016
- 277Citations
- 211Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The main objective of this study is to propose and verify a novel ensemble methodology that could improve prediction performances of landslide susceptibility models. The proposed methodology is based on the functional tree classifier and three current state-of-the art machine learning ensemble frameworks, Bagging, AdaBoost, and MultiBoost. According to current literature, these methods have been rarely used for the modeling of rainfall-induced landslides. The corridor of the National Road 32 (Vietnam) was selected as a case study. In the first stage, the landslide inventory map with 262 landslide polygons that occurred during the last 20 years was constructed and then was randomly partitioned into a ratio of 70/30 for training and validating the models. Second, ten landslide conditioning factors were prepared such as slope, aspect, relief amplitude, topographic wetness index, topographic shape, distance to roads, distance to rivers, distance to faults, lithology, and rainfall. The model performance was assessed and compared using the receiver operating characteristic and statistical evaluation measures. Overall, the FT with Bagging model has the highest prediction capability (AUC = 0.917), followed by the FT with MultiBoost model (AUC = 0.910), the FT model (AUC = 0.898), and the FT with AdaBoost model (AUC = 0.882). Compared with those derived from popular methods such as J48 decision trees and artificial neural networks, the performance of the FT with Bagging model is better. Therefore, it can be concluded that the FT with Bagging is promising and could be used as an alternative in landslide susceptibility assessment. The result in this study is useful for land use planning and decision making in landslide prone areas.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84984580911&origin=inward; http://dx.doi.org/10.1007/s12665-016-5919-4; http://link.springer.com/10.1007/s12665-016-5919-4; http://link.springer.com/content/pdf/10.1007/s12665-016-5919-4; http://link.springer.com/content/pdf/10.1007/s12665-016-5919-4.pdf; http://link.springer.com/article/10.1007/s12665-016-5919-4/fulltext.html; https://dx.doi.org/10.1007/s12665-016-5919-4; https://link.springer.com/article/10.1007/s12665-016-5919-4
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know