Spatial prediction of urban landslide susceptibility based on topographic factors using boosted trees
Environmental Earth Sciences, ISSN: 1866-6299, Vol: 77, Issue: 18
2018
- 23Citations
- 45Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
As global warming accelerates, abnormal weather events are occurring more frequently. In the twenty-first century in particular, hydrological disruption has increased as water flows have changed globally, causing the strength and frequency of hydrological disasters to increase. The damage caused by such disasters in urban areas can be extreme, and the creation of landslide susceptibility maps to predict and analyze the extent of future damage is an urgent necessity. Therefore, in this study, probabilistic and data mining approaches were utilized to identify landslide-susceptible areas using aerial photographs and geographic information systems. Areas where landslides have occurred were located through interpretation of aerial photographs and field survey data. In addition, topographic maps generated from aerial photographs were used to determine the values of topographic factors. A frequency ratio (FR) model was utilized to examine the influences of topographic, soil and vegetation factors on the occurrence of landslides. A total of 23 variables that affect landslide frequency were selected through FR analysis, and a spatial database was constructed. Finally, a boosted tree model was applied to determine the correlations between various factors and landslide occurrence. Correlations among related input variables were calculated as predictor importance values, and sensitivity analysis was performed to quantitatively analyze the impact of each variable. The boosted tree model showed validation accuracies of 77.68 and 78.70% for the classification and regression algorithms using receiver operating characteristic curve, respectively. Reliable accuracy can provide a scientific basis to urban municipalities for policy recommendations in the management of urban landslides.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know