Tracking of uranium and thorium natural distribution in the chemical fractions of the Nile Valley and the Red Sea phosphorites, Egypt
Carbonates and Evaporites, ISSN: 1878-5212, Vol: 39, Issue: 2
2024
- 1Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The present study aims to elucidate the possible sources of uranium and thorium content in the Campanian–Maastrichtian phosphorites from the Duwi Formation in the Nile Valley and Red Sea by conducting facies analysis and sequential leaching method. Nile Valley samples were collected from the El-Sibaiya East area, while those of the Red Sea were collected from two locations: Hamadat and Zug El Bahar. The petrographic investigation revealed that the Sibaiya East phosphorites exhibit peloidal bioclastic phospharenite–phospharudite microfacies, while Hamadat and Zug El Bahar phosphorites display peloidal bioclastic phosphalutite and silicified peloidal bioclastic phospharenite microfacies, respectively. Besides, U–Th bearing accessory minerals, such as zircon and monazite occur in Sibaiya East phosphorites. Thorium is present in Zug El Bahar phosphorites as minute accumulations associating apatite and quartz. Moreover, uranium is found with vanadium and iron as fine patches in the Sibaiya East phosphorite, and as small disseminations associated with Ca and Si in the Hamadat phosphorite. The X-ray diffraction shows that the investigated phosphorites are essentially built up of hydroxyl apatite Ca(PO)(OH) and quartz SiO To accurately evaluate the bioavailability and mobility of uranium and thorium in the investigated phosphorites, it was necessary to identify the overall concentration and the various chemical forms of these elements by a five-step sequential leaching technique. The results indicate that Th and U are more abundant in the Red Sea phosphorites than in the Nile Valley phosphorites. Furthermore, Th is not bio-available and it is mostly found in the residue as Th-bearing minerals. Uranium, unlike Th is bio-available and fractionates among all fractions, indicating that U accumulation is the result of various diagenetic processes.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know