Interactions and Covariation of Ecological Drivers Control CO Fluxes in an Alpine Peatland
Wetlands, ISSN: 1943-6246, Vol: 43, Issue: 5
2023
- 4Citations
- 9Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Peatland ecosystems are a highly effective long-term carbon sink. However, the CO fluxes could be substantially altered by climate changes and the fate of carbon stored in these ecosystems is still uncertain. Currently, most studies concerning the carbon fluxes in peatlands were performed at high latitude sites, where these ecosystems are more widely distributed compared to temperate regions, where peatlands are less frequent and, in addition to climate pressure, increasingly threatened by human activities. However, the information we have on these peatlands is very scarce. To fill this knowledge gap, we studied CO fluxes in an alpine peatland, through light and dark incubations. Using the natural variation in ecological conditions, we identified the main drivers of CO fluxes, considering in particular their interactions and covariation. Ecosystem respiration and gross primary production were primarily stimulated by the lowering of the water table and the amount of photosynthetic radiation, respectively, whereas net ecosystem CO exchange showed greater variation along the growing season. The influence on CO fluxes of the interactions between the drivers investigated, including soil temperature and moisture as well as vegetation type and plant functional diversity, was found to be of pivotal importance. Finally, a substantial part of the variation in CO emission and uptake processes was regulated by the joint variation of atmospheric and edaphic factors. To understand and predict the CO dynamics of alpine peatlands, it is necessary to consider the interplays among ecological factors, especially in relation to the expected changes in climate and vegetation.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know