PlumX Metrics
Embed PlumX Metrics

Numerical simulation of formation damage by drilling fluid in low permeability sandstone reservoirs

Journal of Petroleum Exploration and Production, ISSN: 2190-0566, Vol: 11, Issue: 4, Page: 1865-1871
2021
  • 11
    Citations
  • 0
    Usage
  • 15
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Understanding the formation damage surrounding the well during the drilling operation is the key to predict damage degree and protect the formation in oil/gas reserviors. Based on the core drainage results, we obtained an empirical relationship between the invasion volume of drilling fluid and permeability reduction of formation. Furthermore, the equation is incorporated into a commercial reservior numerical simulation simulator to characterize the behaviors of drilling fluid invasion process. The results show that, although the invasion depth in low permeability reservoirs is short with the range of 1.7–2.5 m, the effect on recovery factor is significant due to the narrow seepage area in the near fracture region. When considering the formation damage, the pressure in the near-fracture damage region drops sharply, leading to a three-stage shape in pressure distribution curve. In addition, we found that high viscosity and low density oil-based slurry and shorter soaking period are conducive to decrease the formation damage during drilling operation. This work reveals the fundamental mechanisms of formation damage in low permeability reservoirs, which is a theoretical basis in formulation drilling fluids and optimization operation parameters.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know