Biodegradation of long chain alkanes in halophilic conditions by Alcanivorax sp. strain Est-02 isolated from saline soil
3 Biotech, ISSN: 2190-5738, Vol: 9, Issue: 4, Page: 141
2019
- 13Citations
- 52Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations13
- Citation Indexes13
- 13
- Captures52
- Readers52
- 52
Article Description
In this study, through a multistep enrichment and isolation procedure, a halophilic bacterial strain was isolated from unpolluted saline soil, which was able to effectively and preferentially degrade long chain alkanes (especially tetracosane and octacosane). The strain was identified by 16S rRNA gene sequence as an Alcanivorax sp. The growth of strain Est-02 was optimized at the presence of tetracosane in different NaCl concentrations, temperatures, and pH. The consumption of different heavy alkanes was also investigated. Optimal culture conditions of the strain were determined to be as follows: 10% NaCl, temperature 25–35 °C and pH 7. Alcanivorax sp. strain Est-02 was able to use a wide range of aliphatic substrates ranging from C to C with clear tendency to utilize heavy chain hydrocarbons of C and C. During growth on a mixture of alkanes (C–C), the strain consumed 60% and 65% of tetracosane and octacosane, respectively, while only about 40% of the lower chain alkanes were degraded. This unique ability of the strain Est-02 in efficient and selective biodegradation of long chain hydrocarbons could be further exploited for remediation of wax and heavy oil contaminated soils or upgrading of heavy crude oils. Comparison of the sequence of alkane hydroxylase gene (alkB) of strain Est-02 with previously reported sequences for Alcanivorax spp. and other hydrocarbon degraders, showed a remarkable phylogenetic distance between the sequence alkB of Est-02 and other alkane-degrading bacteria.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85063041312&origin=inward; http://dx.doi.org/10.1007/s13205-019-1670-3; http://www.ncbi.nlm.nih.gov/pubmed/30944788; http://link.springer.com/10.1007/s13205-019-1670-3; https://dx.doi.org/10.1007/s13205-019-1670-3; https://link.springer.com/article/10.1007/s13205-019-1670-3
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know