Phenylpropanoid metabolism, hormone biosynthesis and signal transduction-related genes play crucial roles in the resistance of Paulownia fortunei to paulownia witches’ broom phytoplasma infection
Genes and Genomics, ISSN: 2092-9293, Vol: 37, Issue: 11, Page: 913-929
2015
- 30Citations
- 19Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Paulownia witches’ broom (PaWB) caused by an obligate biotrophic plant pathogen called phytoplasma, is a devastating disease of paulownia trees over a large part of the world. However, little is known about the molecular mechanisms that underlie phytoplasma pathogenicity in paulownia or about the mode of interactions with host plants. In this study, genome-wide gene expression profiling was used to compare healthy, phytoplasma-infected, and both phytoplasma-infected and 20 mg L methyl methane sulfonate (MMS) treated Paulownia fortunei plants using high-throughput mRNA sequencing analysis. A total of 6571 and 1377 differentially expressed unigenes were identified in the phytoplasma-infected plants versus healthy plants and in 20 mg L MMS-treated plants versus phytoplasma-infected plants, respectively. Expression changes of 16 candidate differentially expressed unigenes were validated by qRT-PCR, indicating significant differences among the three P. fortunei samples. Our analysis showed that dramatic changes occurred in the gene expression profile of P. fortunei after PaWB phytoplasma infection and MMS treatment. The transcription of a large number of genes related to the plant–pathogen interaction, including phenylpropanoid metabolism, hormone biosynthesis and signaling, defense and/or pathogenesis, and signal transduction, were significantly up-regulated in the phytoplasma-infected paulownia and then returned to the levels in the healthy controls after MMS treatment. Our systematic analysis provides comprehensive transcriptomic data about P. fortunei trees infected by PaWB phytoplasma. The findings will help unraveling the molecular mechanisms of plant-phytoplasma interactions and may pave the way for engineering P. fortunei trees with improved properties.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know