Vibrational Signatures of Isomeric Lithiated N-acetyl-D-hexosamines by Gas-Phase Infrared Multiple-Photon Dissociation (IRMPD) Spectroscopy
Journal of the American Society for Mass Spectrometry, ISSN: 1879-1123, Vol: 28, Issue: 3, Page: 539-550
2017
- 33Citations
- 11Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations33
- Citation Indexes33
- 33
- CrossRef16
- Captures11
- Readers11
- 11
Article Description
Three lithiated N-acetyl-D-hexosamine (HexNAc) isomers, N-acetyl-D-glucosamine (GlcNAc), N-acetyl-D-galactosamine (GalNAc), and N-acetyl-D-mannosamine (ManNAc) are investigated as model monosaccharide derivatives by gas-phase infrared multiple-photon dissociation (IRMPD) spectroscopy. The hydrogen stretching region, which is attributed to OH and NH stretching modes, reveals some distinguishing spectral features of the lithium-adducted complexes that are useful in terms of differentiating these isomers. In order to understand the effect of lithium coordination on saccharide structure, and therefore anomericity, chair configuration, and hydrogen bonding networks, the conformational preferences of lithiated GlcNAc, GalNAc, and ManNAc are studied by comparing the experimental measurements with density functional theory (DFT) calculations. The experimental results of lithiated GlcNAc and GalNAc show a good match to the theoretical spectra of low-energy structures adopting a C chair conformation, consistent with this motif being the dominant conformation in condensed-phase monosaccharides. The epimerization effect upon going to lithiated ManNAc is significant, as in this case the C chair conformers give a more compelling match with the experimental results, consistent with their lower calculated energies. A contrasting computational study of these monosaccharides in their neutral form suggests that the lithium cation coordination with Lewis base oxygens can play a key role in favoring particular structural motifs (e.g., a C versus C ) and disrupting hydrogen bond networks, thus exhibiting specific IR spectral features between these closely related lithium-chelated complexes. [Figure not available: see fulltext.]
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85015364475&origin=inward; http://dx.doi.org/10.1007/s13361-016-1575-x; http://www.ncbi.nlm.nih.gov/pubmed/28050874; https://pubs.acs.org/doi/10.1007/s13361-016-1575-x; http://link.springer.com/10.1007/s13361-016-1575-x; https://link.springer.com/article/10.1007%2Fs13361-016-1575-x
American Chemical Society (ACS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know