Enhancing biogas production of cow dung during anaerobic digestion using nanoferrites
Biomass Conversion and Biorefinery, ISSN: 2190-6823, Vol: 12, Issue: 9, Page: 4139-4146
2022
- 11Citations
- 38Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The aim of the presented work is introducing a simple and rapid way with high profit not only to reduce expenses and efforts, but also to guarantee safety and eco-friendly biogas source. Thus, the effect of nanoferrites, as a source of metal ion, on biogas production rate was studied. Nanoferrites MFeO (M = Fe, Ni, Co) were synthesized via a modified aqueous co-precipitation method under alkaline conditions using monoisopropanolamine (MIPA) as a base and capping agent. The prepared nanoparticles were investigated by transmission electron microscopy (TEM), X-ray diffractometry (XRD), and vibrating sample magnetometer (VSM). Anaerobic system was constructed from special bench-scale digesters for examination of the nanoferrite effect on biogas production rate. The TEM images showed ultra-small, spherically, slightly aggregated, and well-distributed nanoparticles in the range of 5.7, 4.9, and 3.5 nm for magnetite (FeO), cobalt ferrite (CoFeO), and nickel ferrite (NiFeO) nanoparticles (NPs), respectively. XRD patterns confirmed the cubic spinel structure for the prepared nanoparticles. VSM measurements predicted the superparamagnetic behaviors for all prepared nanoparticles. The effects of FeO, CoFeO, and NiFeO NPs with same concentrations on biogas production were investigated and yielded biogas cumulative volumes of 210.8%, 220.5%, and 171.9%, respectively, with respect to control, after 50 days of incubation. CoFeO nanoparticles showed the greatest enhanced effect on the cumulative biogas production, followed by FeO nanoparticles.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know