PlumX Metrics
Embed PlumX Metrics

Nanocellulose isolation using a thermostable endoglucanase-rich cocktail from Myceliophthora thermophila cultivated in a multilayer packed-bed bioreactor

Biomass Conversion and Biorefinery, ISSN: 2190-6823, Vol: 14, Issue: 8, Page: 9121-9136
2024
  • 2
    Citations
  • 0
    Usage
  • 8
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

The isolation of nanocellulose materials by means of enzymatic hydrolysis offers advantages in terms of their properties and operational conditions, but there is still a lack of enzymatic cocktails specifically designed for this application. The present work investigates the use of a thermostable endoglucanase-rich enzymatic cocktail from Myceliophthora thermophila for nanocellulose production. An initial set of experiments was conducted to determine the optimal conditions for enzyme production under solid-state cultivation in small-scale polypropylene plastic bags. A full factorial experimental design was used as a statistical tool to evaluate the effects of the solid substrate and moisture content on the production of endoglucanase and β-glucosidase. Solid-state cultivations in a multilayer packed-bed bioreactor were then carried out under the selected conditions to obtain a larger volume of an enzymatic extract with high endoglucanase selectivity, given by the ratio of endoglucanase (203 ± 6 U/g-substrate) to β-glucosidase activity (1.6 ± 0.1 U/g-substrate). The enzymatic hydrolysis of eucalyptus cellulose pulp at different temperatures, with this endoglucanase-rich cocktail at a loading of 10 mg-protein/g-pulp, resulted in higher glucose release (11 ± 2 g-glucose/L) at 60 °C, with 61 ± 9% cellulose conversion and 16.2% nanocellulose yield. The isolated nanomaterial with average diameter of 36.65 nm and length of 156.63 nm, presented a crystallinity index of 77.4% and thermal stability temperature of 316 °C. These results show the potential to isolate nanocellulose using a thermostable endoglucanase-rich enzymatic cocktail produced locally by solid-state cultivation in a packed-bed bioreactor, in accordance to the biorefinery concept.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know