Nanocellulose isolation using a thermostable endoglucanase-rich cocktail from Myceliophthora thermophila cultivated in a multilayer packed-bed bioreactor
Biomass Conversion and Biorefinery, ISSN: 2190-6823, Vol: 14, Issue: 8, Page: 9121-9136
2024
- 2Citations
- 8Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The isolation of nanocellulose materials by means of enzymatic hydrolysis offers advantages in terms of their properties and operational conditions, but there is still a lack of enzymatic cocktails specifically designed for this application. The present work investigates the use of a thermostable endoglucanase-rich enzymatic cocktail from Myceliophthora thermophila for nanocellulose production. An initial set of experiments was conducted to determine the optimal conditions for enzyme production under solid-state cultivation in small-scale polypropylene plastic bags. A full factorial experimental design was used as a statistical tool to evaluate the effects of the solid substrate and moisture content on the production of endoglucanase and β-glucosidase. Solid-state cultivations in a multilayer packed-bed bioreactor were then carried out under the selected conditions to obtain a larger volume of an enzymatic extract with high endoglucanase selectivity, given by the ratio of endoglucanase (203 ± 6 U/g-substrate) to β-glucosidase activity (1.6 ± 0.1 U/g-substrate). The enzymatic hydrolysis of eucalyptus cellulose pulp at different temperatures, with this endoglucanase-rich cocktail at a loading of 10 mg-protein/g-pulp, resulted in higher glucose release (11 ± 2 g-glucose/L) at 60 °C, with 61 ± 9% cellulose conversion and 16.2% nanocellulose yield. The isolated nanomaterial with average diameter of 36.65 nm and length of 156.63 nm, presented a crystallinity index of 77.4% and thermal stability temperature of 316 °C. These results show the potential to isolate nanocellulose using a thermostable endoglucanase-rich enzymatic cocktail produced locally by solid-state cultivation in a packed-bed bioreactor, in accordance to the biorefinery concept.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know