Approximate optimal control of fractional stochastic hemivariational inequalities of order (1, 2] driven by Rosenblatt process
Fractional Calculus and Applied Analysis, ISSN: 1314-2224, Vol: 27, Issue: 2, Page: 848-876
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We study the approximate optimal control for a class of fractional stochastic hemivariational inequalities with non-instantaneous impulses driven by Rosenblatt process in a Hilbert space. Firstly, a suitable definition of piecewise continuous mild solution is introduced, and by using stochastic analysis, properties of α-order sine and cosine family and Picard type approximate sequences, we show the existence and uniqueness of approximate mild solutions for the inequality problems of fractional order (1, 2] under the non-Lipschitz conditions. Secondly, we provide the existence conditions of approximate solutions to optimal control problems driven by the presented control systems with the help of a new minimizing sequence method. Finally, an example is provided to illustrate the theory.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know