Sorption studies of yttrium(III) ions on surfaces of nano-thorium(IV) oxide and nano-zirconium(IV) oxide
International Journal of Environmental Science and Technology, ISSN: 1735-2630, Vol: 16, Issue: 1, Page: 59-70
2019
- 11Citations
- 13Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Sorption of yttrium on nano-thorium oxide and zirconium oxide was carried out as a function of pH, contact time, concentration, temperature and co-ions. The effect of initial yttrium ion concentration has been investigated in the range of 0.5–50 ppm for 1.0 mg of sorbent dosages. Maximum sorption of 10.5 mg/g in case of nano-thorium oxide and 18.0 mg/g in case of nano-zirconium oxide was noticed from the solution of initial metal ion concentration 0.5 ppm, temperature of 298 K, pH 6.9, shaking time of 120 min (nano-thorium oxide) and contact time of 50 min (nano-zirconium oxide) for the yttrium ion sorption. Sorption followed both Dubinin–Radushkevich and Langmuir isotherms. The free energy of sorption was found to be 8.77 kJ/mol (yttrium(III) vs nano-thorium dioxide) and 18.4 kJ/mol (yttrium(III) vs nano-zirconium oxide) using Dubinin–Radushkevich isotherm. Sorption increased with increase in temperature in the studied temperature range. Sorption was endothermic. And the values of ∆H°, ∆S° and ∆G° were also evaluated. Pseudo-second-order equation fitted for the sorption kinetics. Reichenberg equation was used to explain the diffusion process. The effects of co-ions on sorptions were also investigated. BET surface areas of sorbent particles were 33 m /g for nano-zirconium oxide and 25 m /g for nano-thorium oxide. X-ray diffraction and high-resolution transmission electron microscopy data revealed that the size of the sorbent particles was 4.7 and 15.5 nm for nano-thorium dioxide and nano-zirconium dioxide, respectively.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85054314630&origin=inward; http://dx.doi.org/10.1007/s13762-017-1589-3; http://link.springer.com/10.1007/s13762-017-1589-3; http://link.springer.com/content/pdf/10.1007/s13762-017-1589-3.pdf; http://link.springer.com/article/10.1007/s13762-017-1589-3/fulltext.html; https://dx.doi.org/10.1007/s13762-017-1589-3; https://link.springer.com/article/10.1007/s13762-017-1589-3
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know