Complete degradation of chlorinated ethenes and its intermediates through sequential anaerobic/aerobic biodegradation in simulated groundwater columns (complete degradation of chlorinated ethenes)
International Journal of Environmental Science and Technology, ISSN: 1735-2630, Vol: 17, Issue: 11, Page: 4517-4530
2020
- 13Citations
- 11Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This study evaluated the effectiveness of sequential anaerobic/aerobic biodegradation of tetrachloroethene (PCE) and its intermediates, cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC). Two sand columns were operated in series. The first column simulated the up-gradient side of a groundwater system, was operated under anaerobic conditions, and was continuously fed the target contaminant, PCE (42 µM). The second column simulated the down-gradient side of the groundwater system and was operated under aerobic conditions, using low concentrations of hydrogen peroxide as the dissolved oxygen source. After 15 days of operation, cDCE was detected at the end of the first, anaerobic column, at concentrations of 7.02–15.57 μM. After 36 days of operation, VC (7.32 μM) was also detected at the end of the first column. cDCE and VC then migrated into the second, aerobic column. Results showed that cDCE and VC were almost completely aerobically biodegraded in the second column, with removal efficiencies of up to 97% and 95%, respectively. This study also used batch experiments to compare cDCE removal efficiencies between aerobic metabolism using cDCE as the only substrate, and aerobic cometabolism using methane and cDCE as primary and secondary substrates. Results showed that aerobic cometabolism of cDCE was inhibited at cDCE concentrations greater than 50 mg/L. This inhibition effect was not obvious under aerobic metabolism using cDCE as the only substrate. Results of a Michaelis–Menten/Monod kinetics analysis showed that when cDCE concentrations were greater than 20 mg/L, cDCE could be biodegraded more effectively under aerobic metabolism than under aerobic cometabolism.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85086357807&origin=inward; http://dx.doi.org/10.1007/s13762-020-02792-z; https://link.springer.com/10.1007/s13762-020-02792-z; https://link.springer.com/content/pdf/10.1007/s13762-020-02792-z.pdf; https://link.springer.com/article/10.1007/s13762-020-02792-z/fulltext.html; https://dx.doi.org/10.1007/s13762-020-02792-z; https://link.springer.com/article/10.1007/s13762-020-02792-z
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know