Removal of dyes from aqueous solution using ultraviolet/hydrogen peroxide/titanium dioxide process in a rotating microreactor
International Journal of Environmental Science and Technology, ISSN: 1735-2630, Vol: 19, Issue: 6, Page: 5421-5436
2022
- 5Citations
- 7Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this study, a rotating microreactor made of Plexiglas was utilized for the removal of methylene blue and methyl oranges from aqueous solutions with these two dyes at different concentrations. To this end, an advanced oxidation process of ultraviolet/hydrogen peroxide/titanium dioxide was performed while setting various conditions for this operation. Box–Behnken experimental design method was implemented to design the experiments. In addition, five variables of initial dye concentration (10, 30, and 50 mg/L), residence time (1, 1.5, and 2 min), hydrogen peroxide concentration (0, 300, and 600 mg/L), titanium dioxide concentration (10, 30, and 50 mg/L), and ultraviolet lamp power (0, 15 and 30 W) were set as the desired variables under the study and a total of 43 tests were performed to remove each dye. Finally, optimal operating conditions for the removal of each of the two items (methylene blue and methyl orange) were obtained. The highest rate of the removal of methylene blue dye (under optimal conditions of initial dye concentration of 36 mg/L, residence time of 2 min, hydrogen peroxide concentration of 235 mg/L, titanium dioxide concentration of 12 mg/L, and ultraviolet lamp power of 30 W) was 99.83% and the highest rate of methyl orange dye removal (under optimal conditions of initial dye concentration of 50 mg/L, residence time of 1.75 min, hydrogen peroxide concentration of 540 mg/L, titanium dioxide concentration of 30 mg/L, and ultraviolet lamp power of 30 W) was 68.69%.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know